Возможности использования нанотрубок в молекулярной электронике неизмеримо возрастают при переходе от чисто углеродных к химически модифицированным нанотрубкам. Например, благодаря наличию цилиндрической полости внутрь углеродных нанотрубок, как было сказано, удается внедрить различные элементы, включая тяжелые металлы. Возможно добавление аддендов (например, атомов фтора) на внешнюю поверхность трубки. Кроме углеродных сейчас умеют получать и бор-азотные нанотрубки. Во всех этих случаях должны получаться материалы с новыми и пока еще экспериментально не изученными свойствами. Подобно тому, как в начале 90-х годов перед квантовой химией стояла задача прогнозирования свойств чисто углеродных нанотрубок (с которой она блестяще справилась, вызвав бурный рост экспериментальных исследований), теперь требуются расчеты таких, существенно более сложных систем.

Металлизированные нанотрубки. Расчеты металлизированных нанотрубок потребовали разработки нового квантово-химического метода (названного методом линеаризованных присоединенных цилиндрических волн). В этом методе принимается допущение, что система заключена в непроницаемый потенциальный барьер цилиндрической формы, причем в области атомов электронный потенциал сферически симметричен (практически совпадает с атомным), а в межатомном пространстве постоянен (рис. 1). Тогда электронный спектр системы определяется свободным движением электронов в межатомном пространстве и рассеянием на атомных центрах.

Рис.1. Легированная* металлом (цветные шарики) углеродная нанотрубка внутри цилиндрического потенциального барьера. I - область постоянного межатомного потенциала, II - область атомного потенциала. (При расчетах атомные сферы считаются касающимися друг друга.)

* - Легирование – (лат. ligo - связываю, соединяю), введение в состав металлических сплавов легирующих элементов для придания сплавам определённых физических, химических или механических свойств.

Как показали расчеты, внедрение переходных металлов* в углеродные нанотрубки должно приводить к резкому возрастанию проводимости как полупроводниковых нанотрубок (за счет появления в запрещенной зоне электронных состояний металла), так и металлических (за счет повышения плотности состояний вблизи уровня Ферми - энергия, отделяющая занятые состояния от свободных). Все бор-азотные нанотрубки, в отличие от углеродных, независимо от их геометрии исходно должны быть широкозонными полупроводниками. Внедрение же в них переходных металлов M с образованием структур типа представленной ниже (рис. 2)

Рис.2. [M@B10N10]n

* - Переходные металлы - элементы побочных подгрупп периодической системы (d- и f- элементы).

Общие свойства:

1. Все переходные элементы- металлы имеют низкую электроотрицательность.

2. Все элементы проявляют переменные степени окисления. Начиная с III группы низшая степень окисления имеет основной характер, высшая – кислотный, средние – амфотерный.

3. Все элементы образуют комплексные соединения.

должно приводить к формированию металлической зонной структуры в системе. Исходная однотипность электронных свойств бор-азотных нанотрубок может быть полезна в технологическом плане, так как облегчает изготовление нанопроводов с более воспроизводимыми характеристиками. Если одну половину полупроводниковой нанотрубки заполнить металлом, а вторую оставить нетронутой, мы опять получим молекулярный гетеропереход металл-полупроводник. В случае бор-азотной нанотрубки это будет гетеропереход широкозонный полупроводник–металл, на основе которого можно конструировать нанодиоды и другие элементы, способные функционировать при высоких температурах.

Нанотрубки с аддендами. Гетеропереход может образоваться и при фторировании нанотрубок. Учет стерических и p-электронных взаимодействий при расчетах полной энергии фторированных нанотрубок показал, что присоединение атомов F с внешней стороны нанотрубки более выгодно, чем с внутренней. При этом атомы фтора должны присоединяться сначала к открытым концам нанотрубок, а затем выстраиваться вдоль образующей.

В нанотрубках F-(n, n) и F-(n, 0) (рис.3), достаточно длинных, чтобы можно было пренебречь концевыми эффектами, последний тип присоединения будет основным:

Рис.3.

При добавлении фтора на внешнюю поверхность трубки меняется сетка p-связей, а значит - электрические и другие физические свойства. Как следует из расчетов, все нанотрубки F-(n, n) - полуметаллы, у которых на краю зоны Бриллюэна (зоны "разрешенных" значений энергии электронов в твёрдом теле) щель отсутствует и, так как все нанотрубки (n, n) металлические, наполовину фторированные нанотрубки

Рис.4.

будут представлять собой молекулярные гетеропереходы металл-полуметалл, независимо от их диаметра.

Согласно расчетам, щель запрещенной зоны у нанотрубок типа F-(n, 0) исчезает, если (n+1) кратно трем (рис. 6). В остальных случаях модифицированные трубки - полупроводниковые. Так как в исходных, чисто углеродных нанотрубках (n, 0), запрещенная зона отсутствует, если n кратно трем, то наполовину модифицированные нанотрубки (n, 0)

Рис.5.

будут, в зависимости от диаметра, образовывать гетеропереходы различных типов. Если (n – 1) кратно трем (n = 3l + 1, l = 1, 2, …), это будет гетеропереход полупроводник-полупроводник, причем ширина запрещенной щели в модифицированной части трубки примерно в два раза меньше, чем в исходной (рис. 6). При других значениях n образуется гетеропереход металл-полупроводник, но при n, кратном трем, металлическому концу соответствует немодифицированная часть нанотрубки, а при n = 3l + 2 - модифицированная.

Рис.6. Зависимость ширины запрещенной зоны для исходных и модифицированных нанотрубок типа (n, 0) от параметра их диаметра n.